Neutrinoless Double-Beta Decay

NuFact-2015 August 13, 2015 Rio de Janeiro, Brazil

Yury Kolomensky UC Berkeley/LBNL

Neutrino Physics Landscape

Neutrino mass hierarchy

Neutrino Physics Landscape

- Compelling evidence for
 - Neutrino flavor-changing oscillations
 - □ (therefore) finite neutrino masses
 - Mixing angles are well measured

Neutrino mass hierarchy

Neutrino Physics Landscape

- Compelling evidence for
 - Neutrino flavor-changing oscillations
 - □ (therefore) finite neutrino masses
 - Mixing angles are well measured
- Open questions in ν Physics:
 - How many neutrinos?
 - Sterile neutrinos?
 - \Box What is absolute scale of \lor mass?
 - How are masses arranged?
 - □ Are neutrinos responsible for matterantimatter asymmetry?
 - Majorana or Dirac neutrinos ?
 - □ Is Lepton Number conserved?

Neutrino mass hierarchy

Neutrinoless Double-Beta Decay

SM $2\nu\beta\beta$ decay $\tau \ge 10^{19}$ y

0νββ τ ≥ 10^{25} y

Neutrinoless Double-Beta Decay

- Observation of $0\nu\beta\beta$ would mean
 - Lepton number violation
 - Neutrinos are Majorana particles
 - □ Rate measures (effective) electron neutrino mass

$$m_{\beta\beta} = |\sum_{i} m_i \cdot U_{ie}^2|$$

$$m_{\beta\beta} = |\sum_{i} m_i \cdot U_{ie}^2|$$

Past and present (~10 kg)

$$m_{\beta\beta} = |\sum_{i} m_i \cdot U_{ie}^2|$$

Past and present (~10 kg)

Present and near future (~100 kg)

$$m_{\beta\beta} = |\sum_{i} m_i \cdot U_{ie}^2|$$

Past and present (~10 kg)

Present and near future (~100 kg)

Future (~1000 kg)

$$m_{\beta\beta} = |\sum_{i} m_i \cdot U_{ie}^2|$$

Past and present (~10 kg)

Present and near future (~100 kg)

Future (~1000 kg)

Dreams ? (~10000+ kg?)

$$m_{\beta\beta} = |\sum_{i} m_i \cdot U_{ie}^2|$$

Ovββ Rate and Neutrino Mass

 $\tau^{0\nu}\sim 10^{24}-10^{26}$ years: large mass and extremely low backgrounds needed (underground labs, ultra purity materials, active rejection of backgrounds)

Half-life	Expected Signal (counts/tonne-year)
5×10	~100
5×10	~10
5×10	~1
5×10	~0.1

Sensitivity scaling:

$$\left[\mathbf{T}_{1/2}^{0\nu}\right] \propto \varepsilon ff \cdot I_{abundance} \cdot \sqrt{\frac{Source\ Mass \cdot Time}{Bkg \cdot \Delta E}} \quad \text{(background-limited)}$$

$$T_{1/2}^{0v} \propto \varepsilon ff \cdot I_{abundance} \cdot Source\ Mass \cdot Time$$
 (background-free)

Experimental challenge:

- ✓ Increase *Mass* (200-1000 kg for current experiments): \$\$, R&D
- ✓ Increase *Isotopic Abundance*: \$\$
- ✓ Decrease Bkg (ultimately to $2\nu\beta\beta$ limit): radiopurity, active rejection
- ✓ Decrease ΔE : technology choice

$0v\beta\beta$ Isotopes: Figure of Merit

 $F = G_F^2 \Phi(Q,Z) |M_{0v}|^2 m_e^2 [y^{-1}] \qquad \text{(Want as high as possible)}$

$0v\beta\beta$ Isotopes: Figure of Merit

 $F = G_F^2 \Phi(Q,Z) |M_{0\nu}|^2 m_e^2 [y^{-1}] \qquad \text{(Want as high as possible)}$

Diverse, Vibrant Program

Detection Techniques

Source external to detector (NEMO, SuperNEMO)

Source internal to detector (most common)

Current State of the Art: 136Xe

KamLAND-Zen (Japan) Xe-doped liquid scintillator 383 kg of enriched ¹³⁶Xe EXO-200 (USA) LXe TPC 200 kg of enriched ¹³⁶Xe

Current State of the Art: 136Xe

KamLAND-Zen (Japan) arXiv:1409.0077 T_{1/2}(136Xe)>2.6×10²⁵ years EXO-200 (USA) Nature **510**, 229 (2014) T_{1/2}(¹³⁶Xe)>1.1×10²⁵ years

Next-Gen: KamLAND2-Zen

Next-Gen: nEXO

- 5 tonnes of ^{enr}Xe
- nEXO 5 yr 90% CL sensitivity: $T_{1/2} > 6.6 \cdot 10^{27}$ yr
- LXe homogeneous imaging TPC similar to EXO-200:
 - baseline: install at SNOLAB (cosmogenic background reduced wrt EXO-200)
 - simultaneous measurement: energy, spatial extent, location, particle ID
 - Multi-parameter approach improves sensitivity: strengthens proof in case of discovery
 - -inverted hierarchy covered with a well proven detector concept
 - -possible later upgrade for Ba retrieval/tagging: start accessing normal hierarchy

Single-site,

Mainly signal,

2v and 0v

Multi-site,
Mainly
background

Next-Gen: High-Pressure 136Xe TPC

NEXT (Spain): Electro-luminescence HPXe TPC 10 kg (2015), 100 kg (2017), to tonne

PANDA-X III (China): Electron HPXe TPC 200 kg (2017) to 1 tonne

Key features:

- Event topology (background suppression, kinematics)
- Good energy resolution (significantly better than LXe)

Current State of the Art: 76Ge

GERDA (Italy)
Enriched HPGe array
LAr active shield
18 kg of enriched ⁷⁶Ge (Phase I)
40 kg of enriched ⁷⁶Ge (Phase II)

Majorana Demonstrator (USA)
Enriched HPGe array
High-purity electroformed Cu shield
30 kg of enriched ⁷⁶Ge
15 kg of natural ⁷⁶Ge

GERDA Phase I Results

- > Anti-coincidence with the muon veto
- ➤ Anti-coincidence between detectors: suppression of Multi Site Events (MSE) respect to Single Site Events (SSE)
- **▶** Pulse shape discrimination (PSD)

$$T^{0\nu}_{1/2} > 2.1 \cdot 10^{25} \text{ yr @ 90\% C.L.}$$
 (Frequentist)

$$T^{0\nu}_{1/2} > 3.0 \cdot 10^{25} \text{ yr @ 90\% C.L.} (GERDA+IGEX+HdM)$$

Inconsistent with controversial discovery claim [PL **B586**, 184 (2004)]

GERDA Collaboration, PRL 111 (2013) 122503 Eur. Phys. J. C (2014) 74:2764

Future ⁷⁶Ge Experiment

- Majorana and GERDA are working towards the establishment of a single international $^{76}Ge~0\nu\beta\beta$ collaboration
- Envision a phased, stepwise implementation;

e.g. $250 \rightarrow 500 \rightarrow 1000 \text{ kg}$

5 yr 90% CL sensitivity: $T_{1/2} > 3.2 \cdot 10^{27}$ yr

10 yr 3σ discovery: $T_{1/2} \sim 3 \cdot 10^{27}$ yr

 Moving forward predicated on demonstration of projected backgrounds by MJD and/or GERDA

J.F. Wilkerson

¹³⁰Te: SNO+

SNO+ will replace SNO D₂O with 780 tonnes of LAB, loaded with ^{nat}Te

Phase I (2017-): 160 kg ¹³⁰Te (fiducial volume)

- Scintillator running begins mid-2016
- 0.3% Te loading begins early 2017

Phase II: 2.2 tonnes ¹³⁰Te

- 3% loading of Te (already demonstrated)
- Increased light yield (PMT upgrade, wavelength shifter)
- Containment bag for Te fiducial volume

SNO+ Phase I

SNO+ Phase II

G.D. Orebi Gann

Concept paper: arXiv:1409.5864

G.D. Orebi Gann

Light yield as a function of LS fraction, D. Jaffe et al., BNL

G.D. Orebi Gann

Light yield as a function of LS fraction, D. Jaffe et al., BNL

Concept paper: arXiv:1409.5864

G.D. Orebi Gann

Light yield as a function of LS fraction, D. Jaffe et al., BNL

Concept paper: arXiv:1409.5864

0.5% Te loading — 90% CL 0.5% Te loading 100 Mormal, $m \to 0$ Inverted, $m_1 \to 0$

G.D. Orebi Gann

Water-based liquid scintillator: separation of Cherenkov and scintillation signals

Light yield as a function of LS fraction, D. Jaffe et al., BNL

Concept paper: arXiv:1409.5864

G.D. Orebi Gann

Water-based liquid scintillator: separation of Cherenkov and scintillation signals

Reject dominant background from solar neutrinos

Light yield as a function of LS fraction, D. Jaffe et al., BNL

Concept paper: arXiv:1409.5864

G.D. Orebi Gann

Water-based liquid scintillator: separation of Cherenkov and scintillation signals

Reject dominant background from solar neutrinos

Light yield as a function of LS fraction, D. Jaffe et al., BNL

50kt detector
0.5% loading ^{nat}Te
50t ¹³⁰Te in fid vol

 \Rightarrow 3 σ discovery for $m_{\beta\beta}$ =15meV in 10 yrs

Concept paper: arXiv:1409.5864

¹³⁰Te: CUORE

Array of 988 TeO₂ cryogenic bolometers

- 19 towers suspended in a cylindrical structure
- 13 levels, 4 crystals each
- 5x5x5 cm³ (750g each)
- ¹³⁰Te: 33.8% natural isotope abundance

$$750 \text{ kg TeO}_2 \Rightarrow 200 \text{ kg}^{130}\text{Te}$$

- New pulse tube refrigerator and cryostat:
 - Coldest m³ in Universe (~10 mK)
- Radio-purity techniques and high resolution achieve low backgrounds
- Joint venture between Italy (INFN) and US (DOE, NSF)
- Under construction (expected start of operations by end of 2015)
- Expect energy resolution of 5 keV FWHM and background of ~0.01 counts/(kg*keV*year) in ROI

The CUORE Program

CUORE-0

- ► First tower from the CUORE detector assembly line
- ► 52 TeO₂ crystals, total mass = 39 kg TeO₂ = 10.9 kg 130 Te
- ► Purpose:
 - I. Commission assembly line
 - Run as standalone experiment while CUORE is being constructed, with aim of surpassing Cuoricino
 - 3. Validate CUORE detector design
 - 4. Provide test bed for developing DAQ & analysis framework for CUORE
- ▶ Operating in former Cuoricino cryostat since March 2013

Energy Resolution

- ► We evaluate the energy resolution for each bolometer and dataset by fitting the ²⁰⁸Tl photopeak in the calibration data
- ▶ We achieved the 5 keV resolution goal of CUORE!

Backgrounds

Experiment	Background rate (counts/keV/kg/y)	
	0 uetaeta decay region	Alpha region (excl. peak)
Cuoricino	0.169 ± 0.006	0.110 ± 0.001
CUORE-0	0.058 ± 0.004	0.016 ± 0.001

CUORE-0 Results

Fitted background: 0.058 ± 0.004 (stat.) ± 0.002 (syst.) counts/keV/kg/yr

Best-fit decay rate: $\Gamma^{0\nu\beta\beta}(^{130}\text{Te}) = 0.007 \pm 0.123 \text{ (stat.)} \pm 0.012 \text{ (syst.)} \times 10^{-24} \text{ yr}^{-1}$

90% C.L. limits (Bayesian):

$$\Gamma^{0\nu\beta\beta}$$
 (130Te) < 0.25 × 10⁻²⁴ yr⁻¹
 $T_{1/2}^{0\nu\beta\beta}$ (130Te) > 2.7 × 10²⁴ yr

CUORE-0+Cuoricino limit: $T_{1/2}^{0\nu\beta\beta}(^{130}\text{Te}) > 4.0 \times 10^{24} \text{ yr } (90\% \text{ C.L.})$

CUORE Status and Sensitivity

- Detector: all towers assembled, in underground storage
- Cryostat and dilution unit: commissioning, reached 6 mK base temperature
- Expect to start operations by the end of the year
- 5-year sensitivity: $T_{1/2}(^{130}\text{Te}) > 9.5 \times 10^{25} \text{ years, } m_{\beta\beta} < 52-120 \text{ meV}$

CUORE Upgrade with Particle ID (CUPID)

R. Artusa et al., Eur.Phys.J. **C74**, 3096 (2014) White papers: arXiv:1504.03599 & arXiv:1504.03612

- Next-generation bolometric tonne-scale experiment
- Based on the CUORE design, CUORE cryogenics
- 988 enriched (90%) crystals, PID with light detection
 - □ 4 crystals considered:
 - TeO₂: phonons + Cherenkov detector
 - Options: ZnSe, ZnMoO₄, CdWO₄ (phonons+scintillation)
- Sensitivity to entire IH region
 - © CUORE geometry and background model
 - \$\text{99.9}\% \alpha\$ rejection @ >90\% signal efficiency
 - 5 keV FWHM resolution
 - Challenge: nearly zero background measurement: (ton-year)
 - Figure Half-life sensitivity (2-5)×10²⁷ years in 10 years (3 σ)
 - \mathfrak{F} m_{$\beta\beta$} sensitivity 6-20 meV (3 σ)

Subject of focused R&D effort in next 2-3 years

82Se: SuperNEMO

- •Thin foil with tracking and calorimeter, based on successful NEMO3 detector.
- •<u>Planar</u> and <u>modular</u> design: ~ 100 kg of enriched isotopes (20 modules × ~5-7 kg)
- •Starting with single Demonstrator module, (7 kg of 82Se) to show scalability
- •T_{0v1/2} > 6.5 x I 0²⁴ y → $\langle mv \rangle$ < 0.20 0.40 eV @ (90 % C.L.)

SuperNEMO

• 100 kg of 82Se running for 5 years

• $T_{0v1/2} > 1 \times 10^{26} \text{ y} (90 \% \text{ C.L.}) \langle mv \rangle < 40-100 \text{ meV}$

• $T_{0v1/2} = 2 \times 10^{25} \text{ y (5\sigma)}$

Demonstrator (1 module):

Source (40 mg/cm^2) $4 \times 3 \text{ m}^2$

Tracking: drift chamber ~2000 cells in Geiger mode

deliger intotal

Calorimeter: scintillators + PMTs

~550 PMTs+scint. blocks

Passive water shield

20 Modules 100 kg


```
Previous Expts. T_{1/2} \sim 10^{24} \text{ y} (~ 1 eV) ~kg scale
```

Quasi-degenerate $T_{1/2} \sim 10^{25}$ - 10^{26} y (~100 meV) 30 - 200 kg ~8 expts

1980 - 2007 2007 - 2017 2015 **- 2025**

Previous Expts. $T_{1/2} \sim 10^{24} \text{ y}$ (~ 1 eV) ~kg scale

If $0\nu\beta\beta$ observed

Quasi-degenerate $T_{1/2} \sim 10^{25} - 10^{26}$ y (~ 100 meV) 30 - 200 kg ~ 8 expts

Program to study multiple 0νββ isotopes, using various techniques

200-500 kg scale

1980 - 2007 J.F. Wilkerson 2007 - 2017

2015 - 2025

Previous Expts. $T_{1/2} \sim 10^{24} \text{ y}$ (~ 1 eV) ~kg scale

Quasi-degenerate $T_{1/2} \sim 10^{25} - 10^{26} \text{ y}$ (~100 meV) 30 - 200 kg ~8 expts

Inverted hierarchy $T_{1/2} \sim 10^{27} - 10^{28}$ y (~15 meV) tonne (phased) ~3 experiments All international in scope U.S. involvement in ~2

1980 - 2007

2007 - 2017

2015 - 2025

Previous Expts. $T_{1/2} \sim 10^{24} \text{ y}$ (~ 1 eV) ~kg scale

Quasi-degenerate $T_{1/2} \sim 10^{25} - 10^{26}$ y (~ 100 meV) 30 - 200 kg ~ 8 expts

Program to study multiple $0\nu\beta\beta$ isotopes, using various techniques

~ tonne scale

If **0**νββ Observed

Inverted hierarchy $T_{1/2} \sim 10^{27} - 10^{28}$ y (~15 meV) tonne (phased) ~3 experiments All international in scope U.S. involvement in ~2

1980 - 2007

2007 - 2017

2015 - 2025

Previous Expts. $T_{1/2} \sim 10^{24} \text{ y}$ (~ 1 eV) ~kg scale

Quasi-degenerate $T_{1/2} \sim 10^{25} - 10^{26}$ y (~ 100 meV) 30 - 200 kg ~ 8 expts

Inverted hierarchy $T_{1/2} \sim 10^{27} - 10^{28}$ y (~15 meV) tonne (phased) ~3 experiments All international in scope U.S. involvement in ~2

Normal
hierarchy
~5 meV
≥10's ton
scale

1980 - 2007

2007 - 2017

2015 - 2025

J.F. Wilkerson

DBD and Neutrino Mass

$$m_{\beta\beta} = |\sum_{i} m_i \cdot U_{ie}^2|$$

DBD and Neutrino Mass

$$m_{\beta\beta} = |\sum_{i} m_i \cdot U_{ie}^2|$$

DBD and Neutrino Mass

Many Thanks

S. Elliot, B. Fujikawa, J.J. Gomez-Cadenas, G. Gratta, X. Ji, J. Klein, G.D. Orebi Gann, B.Schwingenheuer, J.F. Wilkerson, L. Yang, and others

Backup

Possible Evidence: Klapdor et al

- Heidelberg-Moscow Ge experiment
 - □ 11 kg of enriched ⁷⁶Ge, 72 kg*y exposure
 - □ Fraction of the collaboration (KKDC) claim discovery

** Klapdor et al., Phys. Lett B 586 (2004) 198

T = (0.7 - 4.2) x 10²⁵ years (3σ C.L.) $m_{\beta\beta}$ = (0.2 - 0.6) eV (3σ C.L.) $m_{\beta\beta \text{ best}}$ = 0.28 eV 4.2σ claim

Intriguing, but not universally accepted...

signal

08/13/2015 NuFACT-2015, Rio c 2000 2010 2020 2020 2020 2020 Energy, NeV

Possible Evidence: Klapdor et al

- Heidelberg-Moscow Ge experiment
 - □ 11 kg of enriched ⁷⁶Ge, 72 kg*y exposure
 - □ Fraction of the collaboration (KKDC) claim discovery
 - © Klapdor et al., Phys. Lett B 586 (2004) 198

```
T = (0.7 - 4.2) x 10<sup>25</sup> years (3σ C.L.)

m_{\beta\beta} = (0.2 - 0.6) eV (3σ C.L.)

m_{\beta\beta \text{ best}} = 0.28 eV

4.2σ claim
```

Intriguing, but not universally accepted...

signal

08/13/2015 NuFACT-2015, Rio ς

55

⁷⁶Ge vs ¹³⁶Xe

Diagonal lines represent different matrix element calculations.

GERDA Collaboration, arXiv:1307.4720

Near Future: GERDA Phase II

- <u>Target</u>: push $T_{1/2}$ sensitivity into the 10²⁶ yr range
 - Increase the exposure: $20 \text{ kg·yr} \Rightarrow 100 \text{ kg·yr}$
 - Reduce background: 10^{-2} cts/keV·kg·yr \Rightarrow 10⁻³ cts/keV·kg·yr
- Mass increase: +30 enriched BEGe detectors
 - already produced (by CANBERRA) and tested (at HADES)
 - 5 already tested during Phase I

•×10 background reduction

- new HV and signal cabling with improved radiopurity and Rn emanation
- new FE electronics
- **PSA** discrimination with BEGe's
- Liquid argon veto instrumentation to detect scintillation light

MJD Overview

- Assembly and construction proceeding at Sanford Davis Campus laboratory.
- Based on assays, material backgrounds projected to meet cleanliness goals.
- Module 1 complete.
- EF copper just completed at SURF and PNNL.
- Shield nearly complete.
- Successful reduction and refinement of enrGe with 98% yield.
- AMTEK (ORTEC) has produced 29.7 kg within 35 detectors from the reduced/refined enrGe. All are underground at SURF being assembled into strings.

Commissioning Schedule

- Prototype Cryostat: decommissioned
- Module 1 May 2015, operating
- Module 2 Late 2015

S. Elliot

MJD Projected Backgrounds

Background Rate (c/ROI-t-y)

Cryogenic Bolometers

Cuoricino, the prototype for CUORE

Gran Sasso National Lab (Italy)

Bolometer detectors Cooled to 10mK

11 modules, 4 detector each, crystal dimension: 5x5x5 cm³ crystal mass: 790 g

 $44 \times 0.79 = 34.76 \text{ kg of TeO}_2$

Encased in a cryostat, lead shield, nitrogen box, neutron shield, and Faraday cage

2 modules x 9 crystals each

crystal dimension: 3x3x6 cm³

crystal mass: 330 g

 $18 \times 0.33 = 5.94 \text{ kg of TeO}_2$

Total detector mass: $40.7 \text{ kg TeO}_2 \Rightarrow 11.34 \text{ kg}^{130}\text{Te}$

Cuoricino Results (2010)

 $\frac{\text{Exposure}}{\text{= 19.6 kg y}}$

Resolution: FWHM at 2615 keV ~7 keV

Background:

In the $\beta\beta0\nu$ region (large crystals) = 0.153 ± 0.006 counts /(keV kg y)

E. Andreotti et al., Astr. Phys. 34, 822 (2011)

No peak found

$$\tau^{0\nu}_{1/2} > 2.8 \times 10^{24} \text{ y at } 90\% \text{ C.L.}$$

 $m_{\beta\beta} < 0.3 - 0.7 \text{ eV}$

Spread is due to a range of published matrix elements

CUORE-0 OVBB Results

- ▶ We perform a simultaneous unbinned extended ML fit to range [2470, 2570] keV
- ► Fit function has three components:
 - Calibration-derived lineshape modeling posited 0vetaeta peak fixed at 2527.5 keV
 - Calibration-derived lineshape modeling ⁶⁰Co peak floated around 2505 keV
 - Continuum background

CUORE Background Model

R. Artusa et al., "Projected background budget of the CUORE experiment", in preparation

CUORE Background Model

R. Artusa et al., "Projected background budget of the CUORE experiment", in preparation

CUORE background goals now demonstrated

Counts / 4 eV bin

Cherenkov Detection in TeO2

Event-by-event α/β discrimination requires light detectors with ~15-20 eV resolution

TES-based light detectors: promising start CRESST/LUCIFER: W-based detectors US (Berkeley/Argonne): bilayer TES

K. Schaeffner et al, Astrop. Phys. 69, 30 (2015)

Scintillating Bolometer R&D

LUCIFER @ LNGS: Zn82Se

LUMINEU & LUCINEU: Zn¹⁰⁰MoO₄

